有限元分析有什么作用?
作者:訪客發布時間:2021-07-09分類:塑料制品瀏覽:101
導讀:解偏微分方程。隨著市場競爭的加劇,產品更新周期愈來愈短,企業對新技術的需求更加迫切,而有限元數值模擬技術是提升產品質量、縮短設計周期、提高產品競爭力的一項有效手段,所以,隨著計算機...
解偏微分方程。
隨著市場競爭的加劇,產品更新周期愈來愈短,企業對新技術的需求更加迫切,而有限元數值模擬技術是提升產品質量、縮短設計周期、提高產品競爭力的一項有效手段,所以,隨著計算機技術和計算方法的發展,有限元法在工程設計和科研領域得到了越來越廣泛的重視和應用。
已經成為解決復雜工程分析計算問題的有效途徑,從汽車到航天飛機幾乎所有的設計制造都已離不開有限元分析計算,其在機械制造、材料加工、航空航天、汽車、土木建筑、電子電器、國防軍工、船舶、鐵道、石化、能源和科學研究等各個領域的廣泛使用已使設計水平發生了質的飛躍。
擴展資料:
基本特點:
有限元方法與其他求解邊值問題近似方法的根本區別在于它的近似性僅限于相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:“有限元法=Rayleigh Ritz法+分片函數”,即有限元法是Rayleigh Ritz法的一種局部化情況。
不同于求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優于其他近似方法的原因之一。
參考資料來源:百度百科——有限元分析
- 塑料制品排行
- 最近發表