化學粘合劑的粘合原理
作者:化工綜合網發布時間:2022-03-04分類:無機化工瀏覽:309
膠粘劑的六大粘合機理:一、吸附理論人們把固體對膠粘劑的吸附看成是膠接主要原因的理論,稱為膠接的吸附理論。理論認為:粘接力的主要來源是粘接體系的分子作用力,即范德化引力和氫鍵力。膠粘與被粘物表面的粘接力與吸附力具有某種相同的性質。膠粘劑分子與被粘物表面分子的作用過程有兩個過程:第一階段是液體膠粘劑分子借助于布朗運動向被粘物表面擴散,使兩界面的極性基團或鏈節相互靠近。在此過程中,升溫、施加接觸壓力和降低膠粘劑粘度等都有利于布朗運動加強。第二階段是吸附力的產生。當膠粘劑與被粘物分子間的距離達到5-10?時,界面分子之間便產生相互吸引力,使分子間的距離進一步縮短到處于最大穩定狀態。根據計算,由于范德華力的作用,當兩個理想的平面相距為10?時,它們之間的引力強度可達10-1000MPa;當距離為3-4?時,可達100-1000MPa。這個數值遠遠超過現代最好的結構膠粘劑所能達到的強度。因此,有人認為只要當兩個物體接觸很好時,即膠粘劑對粘接界面充分潤濕,達到理想狀態的情況下,僅色散力的作用,就足以產生很高的膠接強度。可是實際膠接強度與理論計算相差很大,這是因為固體的力學強度是一種力學性質,而不是分子性質,其大小取決于材料的每一個局部性質,而不等于分子作用力的總和。計算值是假定兩個理想平面緊密接觸,并保證界面層上各對分子間的作用同時遭到破壞時,也就不可能有保證各對分子之間的作用力同時發生。膠粘劑的極性太高,有時候會嚴重妨礙濕潤過程的進行而降低粘接力。分子間作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情況下,其他因素也能起主導作用。二、化學鍵形成理論化學鍵理論認為膠粘劑與被粘物分子之間除相互作用力外,有時還有化學鍵產生,例如硫化橡膠與鍍銅金屬的膠接界面、偶聯劑對膠接的作用、異氰酸酯對金屬與橡膠的膠接界面等的研究,均證明有化學鍵的生成。化學鍵的強度比范德華作用力高得多;化學鍵形成不僅可以提高粘附強度,還可以克服脫附使膠接接頭破壞的弊病。但化學鍵的形成并不普遍,要形成化學鍵必須滿足一定的條件,所以不可能做到使膠粘劑與被粘物之間的接觸點都形成化學鍵。況且,單位粘附界面上化學鍵數要比分子間作用的數目少得多,因此粘附強度來自分子間的作用力是不可忽視的。三、弱界層理論當液體膠粘劑不能很好浸潤被粘體表面時,空氣泡留在空隙中而形成弱區。又如,當中含雜質能溶于熔融態膠粘劑,而不溶于固化后的膠粘劑時,會在固體化后的膠粘層中形成另一相,在被粘體與膠粘劑整體間產生弱界面層(WBL)。產生WBL除工藝因素外,在聚合物成網或熔體相互作用的成型過程中,膠粘劑與表面吸附等熱力學現象中產生界層結構的不均勻性也會導致。不均勻性界面層就會有WBL出現。這種WBL的應力松弛和裂紋的發展都會不同,因而極大地影響著材料和制品的整體性能。四、擴散理論兩種聚合物在具有相容性的前提下,當它們相互緊密接觸時,由于分子的布朗運動或鏈段的擺產生相互擴散現象。這種擴散作用是穿越膠粘劑、被粘物的界面交織進行的。擴散的結果導致界面的消失和過渡區的產生。粘接體系借助擴散理論不能解釋聚合物材料與金屬、玻璃或其他硬體膠粘,因為聚合物很難向這類材料擴散。五、靜電理論當膠粘劑和被粘物體系是一種電子的接受體-供給體的組合形式時,電子會從供給體(如金屬)轉移到接受體(如聚合物),在界面區兩側形成了雙電層,從而產生了靜電引力。在干燥環境中從金屬表面快速剝離粘接膠層時,可用儀器或肉眼觀察到放電的光、聲現象,證實了靜電作用的存在。但靜電作用僅存在于能夠形成雙電層的粘接體系,因此不具有普遍性。此外,有些學者指出:雙電層中的電荷密度必須達到1021電子/厘米2時,靜電吸引力才能對膠接強度產生較明顯的影響。而雙電層棲移電荷產生密度的最大值只有1019電子/厘米2(有的認為只有1010-1011電子/厘米2)。因此,靜電力雖然確實存在于某些特殊的粘接體系,但決不是起主導作用的因素。六、機械作用力理論從物理化學觀點看,機械作用并不是產生粘接力的因素,而是增加粘接效果的一種方法。膠粘劑滲透到被粘物表面的縫隙或凹凸之處,固化后在界面區產生了嚙合力,這些情況類似釘子與木材的接合或樹根植入泥土的作用。機械連接力的本質是摩擦力。在粘合多孔材料、紙張、織物等時,機構連接力是很重要的,但對某些堅實而光滑的表面,這種作用并不顯著
化學粘合劑的粘合原理:1、吸附理論人們把固體對膠黏劑的吸附看成是膠接主要原因的理論,稱為膠接的吸附理論。理論認為:粘接力的主要來源是粘接體系的分子作用力,即范德化引力和氫鍵力。膠粘與被粘物表面的粘接力與吸附力具有某種相同的性質。膠黏劑分子與被粘物表面分子的作用過程有兩個過程:第一階段是液體膠黏劑分子借助于布朗運動向被粘物表面擴散,使兩界面的極性基團或鏈節相互靠近,在此過程中,升溫、施加接觸壓力和降低膠黏劑粘度等都有利于布朗運動的加強。第二階段是吸附力的產生。當膠黏劑與被粘物分子間的距離達到10-5?時,界面分子之間便產生相互吸引力,使分子間的距離進一步縮短到處于最大穩定狀態。2、化學鍵形成理論化學鍵理論認為膠黏劑與被粘物分子之間除相互作用力外,有時還有化學鍵產生,例如硫化橡膠與鍍銅金屬的膠接界面、偶聯劑對膠接的作用、異氰酸酯對金屬與橡膠的膠接界面等的研究,均證明有化學鍵的生成。化學鍵的強度比范德化作用力高得多;化學鍵形成不僅可以提高粘附強度,還可以克服脫附使膠接接頭破壞的弊病。但化學鍵的形成并不普通,要形成化學鍵必須滿足一定的量子化`件,所以不可能做到使膠黏劑與被粘物之間的接觸點都形成化學鍵。況且,單位粘附界面上化學鍵數要比分子間作用的數目少得多,因此粘附強度來自分子間的作用力是不可忽視的。3、弱界層理論當液體膠黏劑不能很好浸潤被粘體表面時,空氣泡留在空隙中而形成弱區。又如,當中含雜質能溶于熔融態膠黏劑,而不溶于固化后的膠黏劑時,會在固體化后的膠粘形成另一相,在被粘體與膠黏劑整體間產生弱界面層(WBL)。產生WBL除工藝因素外,在聚合物成網或熔體相互作用的成型過程中,膠黏劑與表面吸附等熱力學現象中產生界層結構的不均勻性。不均勻性界面層就會有WBL出現。這種WBL的應力松弛和裂紋的發展都會不同,因而極大地影響著材料和制品的整體性能。4、擴散理論兩種聚合物在具有相容性的前提下,當它們相互緊密接觸時,由于分子的布朗運動或鏈段的擺產生相互擴散現象。這種擴散作用是穿越膠黏劑、被粘物的界面交織進行的。擴散的結果導致界面的消失和過渡區的產生。粘接體系借助擴散理論不能解釋聚合物材料與金屬、玻璃或其他硬體膠粘,因為聚合物很難向這類材料擴散。
- 上一篇:剛性防水材料的品種有哪些
- 下一篇:科普知識 塑料袋的發展歷史
- 無機化工排行
- 最近發表