有關化學發展的有突出歷史意義的事件
作者:化工綜合網發布時間:2021-11-15分類:有機原料瀏覽:68
高分子材料 受熱發粘,受冷變硬。1839年美國用硫磺及加熱天然橡膠,使其交聯成彈性體,應用于輪胎及其他橡膠制品,用途甚廣,這是高分子化工的萌芽時期。1869年,美國用樟腦增塑硝酸纖維素制成塑料,很有使用價值。1891年在法國貝桑松建成第一個人造絲廠。1909年,美國制成,俗稱電木粉,為第一個,廣泛用于電器絕緣材料。 這些萌芽產品,在品種、產量、質量等方面都遠不能滿足社會的要求。所以,上述基礎有機化學品的生產和高分子材料生產,在建立起石油化工以后,都獲得很大發展。 化學工業的大發展時期 從20世紀初至戰后的60~70年代,這是化學工業真正成為大規模生產的主要階段,一些主要領域都是在這一時期形成的。和石油化工得到了發展,進行了開發,逐漸興起。這個時期之初,英國和美國的等人提出的概念,奠定了化學工程的基礎。它推動了生產技術的發展,無論是裝置規模,或產品產量都增長很快。 合成氨工業 20世紀初期異軍突起,用物理化學的反應平衡理論,提出氮氣和氫氣直接合成氨的催化方法,以及原料氣與產品分離后,經補充再循環的設想,進一步解決了設備問題。因而使德國能在第一次世界大戰時建立第一個由氨生產的工廠,以應戰爭之需。合成氨原用焦炭為原料,40年代以后改為石油或天然氣,使化學工業與石油工業兩大部門更密切地聯系起來,合理地利用原料和能量。 石油化工 1920年美國用生產,這是大規模發展石油化工的開端。1939年美國標準油公司開發了臨氫催化重整過程,這成為芳烴的重要來源。1941年美國建成第一套以為原料用制乙烯的裝置。在第二次世界大戰以后,由于化工產品市場不斷擴大,石油可提供大量廉價有機化工原料,同時由于化工生產技術的發展,逐步形成石油化工。甚至不產石油的地區,如西歐、日本等也以原油為原料,發展石油化工。同一原料或同一產品,各化工企業卻有不同的工藝路線或不同催化劑。由于基本有機原料及高分子材料單體都以石油化工為原料,所以人們以乙烯的產量作為衡量有機化工的標志。80年代,90%以上的有機化工產品,來自石油化工。例如、等,過去以電石乙炔為原料,這時改用氧氯化法以乙烯生產氯乙烯,用丙烯氨氧化(見)法以生產丙烯腈。1951年,以天然氣為原料,用蒸汽轉化法得到一氧化碳及氫,使得到重視,目前用于生產、,個別地區用生產。 高分子化工 高分子材料在戰時用于軍事,戰后轉為民用,獲得極大的發展,成為新的材料工業。作為戰略物質的天然橡膠產于熱帶,受阻于海運,各國皆研究。1937年德國法本公司開發獲得成功。以后各國又陸續開發了順丁、丁基、氯丁、丁腈、異戊、乙丙等多種合成橡膠,各有不同的特性和用途。方面,1937年美國 成功地合成尼龍 66(見),用熔融法紡絲,因其有較好的強度,用作降落傘及輪胎用。以后滌綸、維尼綸、腈綸等陸續投產,也因為有石油化工為其原料保證,逐漸占有天然纖維和人造纖維大部分市場。塑料方面,繼酚醛樹脂后,又生產了、醇酸樹脂等熱固性樹脂。30年代后,品種不斷出現,如迄今仍為塑料中的大品種,為當時優異的絕緣材料,1939年高壓用于海底電纜及雷達,低壓聚乙烯、等規聚丙烯的開發成功,為民用塑料開辟廣泛的用途,這是齊格勒-納塔催化劑為高分子化工所作出的一個極大貢獻。這一時期還出現耐高溫、抗腐蝕的材料,如、,其中聚四氟乙烯有塑料王之稱。第二次世界大戰后,一些也陸續用于汽車工業,還作為建筑材料、包裝材料等,并逐漸成為塑料的大品種。 精細化工 在方面,發明了活性染料,使染料與纖維以化學鍵相結合。合成纖維及其混紡織物需要新型染料,如用于滌綸的,用于腈綸的,用于滌棉混紡的活性分散染料。此外,還有用于激光、液晶、顯微技術等特殊染料。在方面,40年代瑞士P.H.米勒發明第一個有機氯農藥之后,又開發一系列有機氯、有機磷,后者具有胃殺、觸殺、內吸等特殊作用。嗣后則要求高效低毒或無殘毒的農藥,如仿生合成的類。60年代,、發展極快,出現了一些性能很好的品種,如吡啶類除草劑、苯并咪唑殺菌劑等。此外,還有抗生素農藥(見),如中國1976年研制成的井岡霉素用于抗水稻紋枯病。醫藥方面,在1910年法國制成606砷制劑(根治梅素的特效藥)后,又在結構上改進制成914,30年代的類化合物、甾族化合物等都是從結構上改進,發揮出特效作用。1928年,英國發現,開辟了抗菌素藥物的新領域。以后研究成功治療生理上疾病的藥物,如治心血管病、精神病等的藥物,以及避孕藥。此外,還有一些專用診斷藥物問世。擺脫天然油漆的傳統,改用,如醇酸樹脂、、丙烯酸樹脂等,以適應汽車工業等高級涂飾的需要。第二次世界大戰后,丁苯膠乳制成水性涂料,成為建筑涂料的大品種。采用高壓無空氣噴涂、靜電噴涂、電泳涂裝、陰極電沉積涂裝、光固化等新技術(見),可節省勞力和材料,并從而發展了相應的涂料品種。 現代化學工業 20世紀60~70年代以來,化學工業各企業間競爭激烈,一方面由于對反應過程的深入了解,可以使一些傳統的基本化工產品的生產裝置,日趨大型化,以降低成本。與此同時,由于新技術革命的興起,對化學工業提出了新的要求,推動了化學工業的技術進步,發展了精細化工、超純物質、新型結構材料和功能材料。 規模大型化 1963年,美國凱洛格公司設計建設第一套日產540t(即600sh.t)合成氨單系列裝置,是化工生產裝置大型化的標志。從70年代起,合成氨單系列生產能力已發展到日產 900~1350t,80 年代出現了日產1800~2700t合成氨的設計,其噸氨總能量消耗大幅度下降。乙烯單系列生產規模,從50年代年產50kt發展到70年代年產100~300kt,80年代初新建的乙烯裝置最大生產能力達年產 680kt。由于冶金工業提供了耐高溫的管材,因之毫秒裂解爐得以實現,從而提高了烯烴收率,降低了能耗。其他化工生產裝置如硫酸、燒堿、基本有機原料、合成材料等均向大型化發展。這樣,減少了對環境的污染,提高了長期運行的可靠性,促進了安全、環保的預測和防護技術的迅速發展。 信息技術用化學品 60年代以來,大規模集成電路和電子工業迅速發展,所需電子計算機的器件材料和信息記錄材料得到發展。60年代以后,多晶硅和單晶硅的產量以每年20%的速度增長。80年代周期表中 ~V族的二元化合物已用于電子器件 隨著半導體器件的發展,氣態源如磷化氫 (PH )等日趨重要。在大規模集成電路制備過程中,需用多種,其雜質含量小于1ppm,對水分及塵埃含量也有嚴格要求。大規模集成電路的另一種基材為,其質量和穩定性直接影響其集成度和成品率。此外,對基質材料、密封材料、焊劑等也有嚴格要求。1963年,荷蘭菲利浦公司研制盒式錄音成功后,日益普及。它不僅用于音頻記錄、視頻記錄等,更重要的是用于計算器作為外存儲器及內存儲器,有磁帶、磁盤、磁鼓、磁泡、磁卡等多種類型。為重要的信息材料,不僅用于光纖通信,且在工業上、醫療上作為內窺鏡材料。 高性能合成材料 60年代已開始用(俗稱尼龍)、聚縮醛類(如)、,以及丙烯腈-丁二烯-苯乙烯三元共聚物 ()等為結構材料。它們具有高強度、耐沖擊、耐磨、抗化學腐蝕、耐熱性好、電性能優良等特點,并且自重輕、易成型,廣泛用于汽車、電器、建筑材料、包裝等方面。60年代以后,又出現、、、等。尤其是為耐高溫、耐高真空、自潤滑材料,可用于航天器。其纖維可做航天服以抗輻射。聚苯并噻唑和聚苯并咪唑為耐高溫樹脂,耐熱性高,可作燒蝕材料,用于火箭。共聚、共混和復合使結構材料改性,例如多元醇預聚物與經催化反應,為尼龍聚醚嵌段共聚物,具有高沖擊強度和耐熱性能,用于農業和建筑機械。另一種是以纖維增強樹脂的高分子復合材料。所用樹脂主要為環氧樹脂、不飽和聚酯、聚酰胺 聚酰亞胺等 所用為玻璃纖維、或(常用丙烯腈基或瀝青基)。這些復合材料比重輕、比強高、韌性好,特別適用于航天、航空及其他交通運輸工具的結構件,以代替金屬,節省能量。和含氟材料也發展迅速,由于它們具有突出的耐高低溫性能、優良電性能、耐老化、耐輻射,廣泛用于電子與電器工業、原子能工業和航天工業。又由于它們具有生理相容性,可作人造器官和生物醫療器材。 能源材料和節能材料 50年代原子能工業開始發展,要求化工企業生產重水、吸收中子材料和傳熱材料以滿足需要。航天事業需要高能。固體推進劑由膠粘劑、增塑劑、氧化劑和添加劑所組成。液體高能燃料有液氫、煤油、偏二甲肼、無水肼等,氧化劑有液氧、發煙硝酸、四氧化二氮。這些產品都有嚴格的性能要求,已形成一個專門的生產行業。為了滿足節能和環保的要求,1960年美國試制成可以實用的膜,以淡化、處理工業污水,以后又擴展用于醫藥、食品工業。但這種膜易于生物降解,也易水解,使用壽命短。1970年,開發了芳香族聚酰胺反滲透膜,它能夠抗生物降解,但不能抗游離氯。1977年,改進后的復合膜用于海水淡化,每立方米淡水僅耗電23.7~28.4MJ 此外,還開發了和用膜等。聚砜中空纖維氣體分離膜,用于合成氨尾氣的氫氮分離及其他多種氣體分離。這種技術比其他工業分離方法可以節能。精細以其硬度見長,用作切削工具。1971年,美國福特汽車公司及威斯汀豪斯電氣公司以β-氮化硅 (β-Si N )為燃汽透平的結構材料,運行溫度曾高達1370℃,提高功效,節省燃料,減少污染,為良好的節能材料,但經10年試驗,仍存在不少問題,尚須進一步改進?,F主要用作陶瓷發動機、透平葉片、導電陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化鋁(Al O )、氧化鋯(ZrO )等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si N )等。80年代,為改進陶瓷的脆性,又在開發硅碳纖維增強陶瓷。 專用化學品得到進一步發展,它以很少的用量增進或賦予另一產品以特定功能,獲得很高的使用價值。例如食品和飼料添加劑,塑料和橡膠助劑,皮革、造紙、油田等專用化學品,以及膠粘劑、防氧化劑、表面活性劑、水處理劑、催化劑等。以催化劑而言,由于電子顯微鏡、電子能譜儀等現代化儀器的發展,有助于了解催化機理,因而制備成各種專用催化劑,標志催化劑進入了新階段。
- 上一篇:石油工業為什么可以作為紡織工業的原料
- 下一篇:丁香酚甲醚具體合成方法
- 有機原料排行
- 最近發表